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Humans with ALS and transgenic rodents expressing ALS-associ-
ated superoxide dismutase (SOD1) mutations develop spontaneous
blood–spinal cord barrier (BSCB) breakdown, causing microvascular
spinal-cord lesions. The role of BSCB breakdown in ALS disease
pathogenesis in humans and mice remains, however, unclear, al-
though chronic blood–brain barrier opening has been shown to
facilitate accumulation of toxic blood-derived products in the
central nervous system, resulting in secondary neurodegenerative
changes. By repairing the BSCB and/or removing the BSCB-derived
injurious stimuli, we now identify that accumulation of blood-
derived neurotoxic hemoglobin and iron in the spinal cord leads to
early motor-neuron degeneration in SOD1G93A mice at least in part
through iron-dependent oxidant stress. Using spontaneous or
warfarin-accelerated microvascular lesions, motor-neuron dysfunc-
tion and injury were found to be proportional to the degree of
BSCB disruption at early disease stages in SOD1G93A mice. Early
treatment with an activated protein C analog restored BSCB in-
tegrity that developed from spontaneous or warfarin-accelerated
microvascular lesions in SOD1G93A mice and eliminated neurotoxic
hemoglobin and iron deposits. Restoration of BSCB integrity de-
layed onset of motor-neuron impairment and degeneration. Early
chelation of blood-derived iron and antioxidant treatment miti-
gated early motor-neuronal injury. Our data suggest that BSCB
breakdown contributes to early motor-neuron degeneration in
ALS mice and that restoring BSCB integrity during an early disease
phase retards the disease process.

amyotrophic lateral sclerosis | neurodegeneration

The blood–brain barrier (BBB) and blood–spinal cord barrier
(BSCB) prevent entry of toxic circulating molecules and cells

into the central nervous system (CNS) (1). Amyotrophic lateral
sclerosis (ALS) is the most prominent adult motor-neuron dis-
order resulting in progressive motor-neuron loss in the spinal
cord, brainstem, and motor cortex (2). Most ALS cases are
sporadic (90%) whereas 10% are familial ALS. Over twenty
independent studies in postmortem human tissue and cerebro-
spinal fluid (CSF) sampling from living ALS patients have
established that the BBB and BSCB are damaged in familial and
sporadic ALS, as reviewed elsewhere (1, 3). This BBB and BSCB
disruption has been shown by spinal-cord and/or motor-cortex
accumulation of different plasma proteins (e.g., IgG, fibrin,
thrombin), erythrocytes, erythrocyte-derived hemoglobin and
iron-containing hemosiderin, elevated CSF/serum albumin ra-
tios, and diminished expression or degradation of the BSCB
tight-junction proteins (1, 3–5). Deposition of hemoglobin-de-
rived iron within the CNS has also been shown in ALS patients
(3, 6, 7). Because human postmortem studies reflect, however,
end-stage disease, it has remained unclear as to which stage of
disease is enhanced by BSCB disruption. Longitudinal CSF or
BSCB imaging studies have yet to be performed in living ALS
patients (3) to clarify whether spinal-cord vascular dysfunc-
tion contributes to early- or late-stage disease.

Transgenic rodents expressing human ALS-associated Cu/Zn
superoxide dismutase (SOD1) mutations that represent 20% of
all familial cases also develop a spontaneous BBB/BSCB dis-
ruption (8–12) similar to vascular pathology reported in humans
(1, 3–7). Mice with a chronic BBB disruption due to aberrant
signal transduction between the central nervous system endo-
thelial cells and pericytes or astrocytes and pericytes develop
a chronic BBB opening accompanied by accumulation of toxic
blood-derived products in the central nervous system and sec-
ondary functional and structural neuronal changes (13–15).
To determine whether BSCB disruption contributes to fatal

paralytic disease caused by expression of an ALS-causing mu-
tant, we now report how perturbing the BSCB, repairing the
BSCB, and/or removing the BSCB-derived injurious stimuli in-
fluence development of disease in SOD1G93A mice that develop
a spontaneous BSCB breakdown (8, 9, 12).

Results and Discussion
Microvascular Lesions Contribute to Early Motor-Neuron Impairment
and Degeneration. To further perturb the BSCB in SOD1G93A

mice, we used a low dose of warfarin, an anticoagulant (16). Al-
though treatment with a high dose of warfarin produces massive
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Fig. 1. Early microvascular lesions in SOD1G93A mice: acceleration by Warfarin and protection by 5A-APC. (A–E) IgG (A and B), hemoglobin (C), hemosiderin
(D), and free iron (E) in the lumbar anterior horn of SOD1G93A mice receiving from 35 to 95 d saline, 0.3–0.6 mg·kg−1·d−1 warfarin (W), and/or 100 μg·kg−1·d−1

5A-APC (APC), 100 mg·kg−1·d−1 deferoxamine mesylate (DFX), or 50 mg·kg−1·d−1 glutathione monoethyl ester (GSHE) with either saline or warfarin (0.4
mg·kg−1·d−1). B6SJL littermates and SOD1WT mice received saline or warfarin (0.6 mg·kg−1·d−1). (F, Upper) Prussian blue-positive hemosiderin deposits (blue)
and collagen IV-positive capillaries (brown) in lumbar cord anterior horn of 95-d-old B6SJL littermate and saline-treated SOD1G93A mouse. (Lower) Perl’s-
positive hemosiderin deposits (red) in 95-d-old SOD1G93A mouse receiving saline or 0.6 mg·kg−1·d−1 warfarin. Broken line denotes boundary of the anterior
horn. (G) Collagen IV-positive capillaries (green) and CD235a-positive erythrocytes (red) in the lumbar anterior horn of 95-d-old B6SJL littermate receiving 0.6
mg·kg−1·d−1 warfarin and SOD1G93A mice receiving saline, 0.4 mg·kg−1·d−1 warfarin or 0.4 mg·kg−1·d−1 warfarin and 5A-APC (100 μg·kg−1·d−1). (H) Percentage
of capillary-associated and noncapillary hemosiderin deposits in 95-d-old SOD1G93A mice receiving saline or warfarin (0.6 mg·kg−1·d−1); n = 4–5 mice per
group. (I) Positive correlation between the number of lumbar hemosiderin deposits and the degree of anticoagulation determined as international nor-
malized ratio (INR) in 95-d-old SOD1G93A mice receiving saline or warfarin (0.3–0.6 mg·kg−1·d−1). Individual data points from four to five animals per group; r,
Pearson’s correlation. In B–E, mean ± SEM, n = 3–5 mice per group. *P < 0.05; NS, nonsignificant. In B–E, APC, DFX, and GSHE treatments were compared with
the respective saline or warfarin treatments as indicated by broken lines.
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cerebral hemorrhage and lethality in rodent models as the result
of hemorrhagic stroke and brain injury (17–19), low-dose war-
farin (0.3, 0.4, and 0.6 mg/kg daily) from day 35–95 postnatal
provided a stable, chronic low level of anticoagulation activity in
SOD1G93A mice accompanied by an increase of the mean in-
ternational normalized ratio (INR) values of 1.3, 2.0, and 2.9,
respectively (Fig. S1 A and B). Low-dose warfarin did not alter
hematocrit, indicating no systemic bleeding (Fig. S1C). Anti-
coagulated SOD1G93A mice, but not anticoagulated non-
transgenic littermates or SOD1WT mice with an intact BSCB (9),
developed an increased number of microvascular lesions com-
pared with saline-treated SOD1G93A mice, as indicated by dose-
dependent spinal-cord accumulation of blood-derived IgG, he-
moglobin, hemosiderin, free iron, and erythrocytes (Fig. 1 A–G).
Most (∼85%) of microvascular lesions determined by hemosid-
erin deposits (20–50 μm in diameter) were associated with spinal-
cord capillaries (≤6 μm in diameter) compared with noncapillary
microvessels (6–40 μm in diameter) both in saline-treated and
warfarin-treated SOD1G93A mice (Fig. 1H). A positive correlation
between the number of hemosiderin deposits and INR values
in individual SOD1G93A mice (Fig. 1I) indicated that the mi-
crovascular damage is proportional to the degree of warfarin
anticoagulation.
Warfarin was not toxic to cultured CNS endothelial cells (Fig.

S2 A–C) and did not alter endothelial expression of tight-junc-
tion proteins—including zonula occludens (ZO1), occludin, and
claudin-5 (Fig. S2 D and E) and/or uptake of different-size
dextran tracers (Fig. S2F). In vivo, warfarin did not affect spinal-
cord capillary density (Fig. S2 G and H) and/or BSCB integrity
(Fig. 1 B–E) in nontransgenic littermates or SOD1WT mice and
did not alter the expression of multiple transporters in spinal-
cord capillaries of SOD1G93A mice (Table S1). Thus, increased
microvascular lesions induced by warfarin treatment in SOD1G93A

mice arise from its anticoagulant activity, not via direct actions
on endothelium.
Microvascular lesions in SOD1G93A mice contain blood-

derived hemoglobin that releases free iron, which can catalyze
formation of neurotoxic free radical species, as previously shown
in in vitro models of motor-neuronal cell injury (20) and more
recently in N2a-SOD1G85R neural cell injury (11). Consistent
with spinal-cord accumulation of neurotoxic blood-derived prod-
ucts (Fig. 1 A–G), SOD1G93A mice treated with warfarin (0.3, 0.4,
and 0.6 mg/kg daily) beginning ∼70 d before our measure of
typical disease onset developed a dose-dependent acceleration in
disease onset [determined by rotarod by 11, 18, and 26 d com-
pared with saline-treated SOD1G93A mice, respectively (Fig. 2 A
and B)]. In individual SOD1G93A mice, onset of motor impairment
was directly proportional to the number of perivascular hemo-
siderin deposits (Fig. 2C). Correspondingly, presymptomatic
warfarin treatment shortened lifespan of SOD1G93A mice (Fig.
S3 A and B) in a dose-dependent manner. Disease duration (Fig.
S3C) was not significantly affected, consistent with previous
studies that have demonstrated disease progression to be driven
by mutant SOD1 synthesis within inflammatory microglia and
astrocytes (21–26). Although, mutant SOD1 transgenic rats de-
velop BBB and BSCB breakdown (10), the contribution of BBB
damage to neurological disease in SOD1 transgenic rodents is
presently unknown, as well as whether SOD1G93A mice develop
or not a generalized or regional BBB breakdown (in the motor
cortex) that might contribute to the observed accelerated
disease phenotype.
Compared with saline-treated SOD1G93A mice, warfarin-trea-

ted SOD1G93A mice showed dose-dependent loss of choline
acetyltransferase (ChAT)-positive motor neurons (27) (Fig. 3 A
and B), loss of neuritic density (Fig. 3 C and D), and an increase
in ubiquitin-positive aggregates (28) (Fig. 3 E and F). In in-
dividual SOD1G93A mice with spontaneous or accelerated vas-
cular lesions, markers of motor-neuronal degeneration strongly

correlated with the magnitude of vascular damage determined by
the number of hemosiderin deposits (Fig. 3 D and G).
Warfarin did not exert direct neuronal toxic effects. For ex-

ample, warfarin did not affect motor function in nontransgenic
controls with an intact BSCB (Fig. 2A), was not toxic to pri-
mary cultured neurons from SOD1G93A mice (Fig. S4 A–C), did
not cause neuronal degeneration in vivo in nontransgenic lit-
termates with an intact BSCB (Fig. 3 D–F), and did not interfere
with the vitamin K-dependent synthetic pathway (29) as shown
by normal levels of sphingolipids or Gas6 in spinal cord (Fig. S4
G and H). Warfarin treatment was also not associated with pro-
inflammatory responses (Fig. S5). Blood glucose, liver, and renal
function tests showed no difference in SOD1G93A mice treated
with saline compared with warfarin (Fig. S6 A–F), suggesting that
warfarin did not lead to generalized tissue dysfunction.
SOD1G93A mice with spontaneous and/or accelerated vascular

damage showed increased oxidant stress (Fig. 4A) that correlated
with increased levels of free iron in the spinal cord (Fig. 4B),
increased oxidation of human SOD1, and the appearance of
higher molecular weight insoluble toxic SOD1 oxidized species
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GSHE (n = 14) from day 35 postnatal. Delay of motor symptoms in days
relative to 0.4 mg/kg warfarin is provided above each group. Values in G,
mean ± SEM, *P < 0.05 compared with 0.4 mg·kg−1·d−1 warfarin.
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Fig. 3. Early motor-neuron degenerative changes and prevention in SOD1G93A mice with spontaneous and accelerated microvascular lesions. (A–C) ChAT-
positive motor neurons (magenta) and SMI-311–positive neurites (green) (A) and quantification of motor neurons (B) and neuritic density (C) in lumbar spinal
cord of 95-d-old nontransgenic littermates and SOD1G93A mice treated with saline, 0.3–0.6 mg·kg−1·d−1 warfarin (W), or 100 μg·kg−1·d−1 5A-APC, 100 mg·kg−1·d−1

DFX, or 50 mg·kg−1·d−1 GSHE with saline or 0.4 mg·kg−1·d−1 warfarin. (D) Negative correlation between SMI-311–positive neurites and lumbar hemosiderin
deposits of 95-d-old individual SOD1G93A mice treated with saline or 0.3–0.6 mg·kg−1·d−1 warfarin. r, Pearson’s correlation; n = 4–5 animals per group. (E)
Ubiquitin-positive accumulates (green) in motor neurons (red, visualized with SMI-311) in the lumbar anterior horn in 95-d-old SOD1G93A mice treated with saline
or 0.6 mg·kg−1·d−1 warfarin. B6SJL, a nontransgenic littermate control. (F) Quantification of ubiquitin accumulation in motor neurons in mice from B. (G) Positive
correlation between motor-neuron ubiquitin accumulation and the number of lumbar hemosiderin deposits in SOD1G93A mice treated with saline or 0.3–
0.6 mg·kg−1·d−1 warfarin. Each point is an individual data point; r, Pearson’s correlation; n = 3–5 mice per group. In B, C, and F, values are mean ± SEM; n =
3–5 mice per group. *P < 0.05; NS, nonsignificant. In B, C, and F, APC, DFX, and GSHE treatments were compared with the respective saline and warfarin
treatments as indicated by broken lines.
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(Fig. 4 C–E). SOD1 oxidation can promote its misfolding, ag-
gregation, and toxicity, which—according to some studies—may
be common to sporadic ALS and familial ALS caused by SOD1
mutations (30–34). Double staining for ChAT and 3-nitro-
tyrosine, an oxidative stress cellular marker, confirmed early
motor-neuron oxidant stress in SOD1G93A mice with a spon-
taneous BSCB breakdown and a further, dose-dependent in-
crease in the number of motor neurons under oxidant stress in
SOD1G93A mice with warfarin-accelerated vascular damage (Fig.
4 F and G).

BSCB Repair Delays Onset of Motor-Neuron Impairment and De-
generation. To determine whether BSCB repair can delay
onset of motor-neuron injury in SOD1G93A mice, we used an ac-
tivated protein C (APC) mutant, 5A-APC, that retains cell-
signaling properties but lacks >90% of the anticoagulant activity
(35). 5A-APC protects the integrity of CNS endothelial barriers
in different models of acute and chronic CNS injury (36). APC
cell signaling activates Rac1-dependent stabilization of the cy-
toskeleton, thereby enhancing the endothelial barrier integrity
(37). 5A-APC treatment (100 μg/kg daily) beginning early at post-
natal day 35 completely normalized the BSCB integrity in
SOD1G93A mice with either spontaneous or warfarin-accelerated
microvascular lesions as indicated by elimination of IgG, hemo-
globin, hemosiderin, and free iron deposits (Fig. 1 A–E). Main-
tenance of BSCB integrity significantly delayed onset of motor
impairment [by 20 and 23 d compared with saline (Fig. 2 E and
F) and warfarin treatment (Fig. 2 G and H), respectively] in
SOD1G93A mice with both spontaneous and accelerated mi-
crovascular lesions. 5A-APC prevented early motor-neuron
degenerative changes in SOD1G93A mice involving spontane-
ous and accelerated BSCB breakdown, as shown by normaliza-
tion of neuritic density and elimination of ubiquitin-positive
deposits from motor neurons (Fig. 3 C and F), and normalized
the reduced number of ChAT-positive motor neurons in warfa-
rin-treated SOD1G93A mice (Fig. 3B). Its beneficial effects were
associated with early reduction in oxidant stress as shown by
reduced levels of oxidized protein carbonyls in the spinal cord
(Fig. 4A), reduction in SOD1 oxidative damage as shown by
diminished levels of higher molecular weight insoluble toxic
SOD1 oxidized species (Fig. 4C), and reduced oxidant motor-
neuron injury as shown by diminished number of ChAT-positive
motor neurons that were positive for 3-nitrotyrosine, an oxida-
tive stress cellular marker (Fig. 4 F and G).
At presymptomatic ages, SOD1G93A mice develop diminished

levels of spinal-cord capillary tight junction proteins including
ZO1, occluding, and claudin-5 (9) (Fig. S7 A–C), which provides
a molecular basis for early BSCB breakdown. 5A-APC treatment
beginning at postnatal day 35 normalized spinal-cord capillary
levels of ZO-1, occluding, and claudin-5 in SOD1G93A mice with
either spontaneous or warfarin-accelerated lesions (Fig. S7 A–
C), consistent with its effect on preventing early BSCB break-
down (Fig. 1 A–E andG). Warfarin treatment did not affect tight
junction protein expression (Fig. S7 A–C). In saline-treated and
warfarin-treated SOD1G93A mice, a presymptomatic increase in
hemosiderin deposits (Fig. S7D) did not result in a detectable
increase in microglial and astrocytic responses (Fig. S7 E–G),
confirming that early BSCB disruption precedes a detectable in-
flammatory response in SOD1G93A mice (9).
In our prior work, we reported that APC treatment beginning

1 wk after motor-neuron impairment influenced multiple com-
ponents of late-stage disease in SOD1G93A mice, including sup-
pression of SOD1 in motor neurons and microglia by ∼40–50%
(11). In contrast, early 5A-APC treatment had no effect on
mutant SOD1 protein or mRNA expression in spinal cord and/or
motor neurons of SOD1G93Amice, as revealed by analysis of spinal-
cord lysates from 5A-APC–treated SOD1G93A mice with spon-
taneous or warfarin-accelerated microvascular lesions (Fig. S7 H

and I) and enriched motor-neuron cell populations from
5A-APC and warfarin-treated SOD1G93A mice (Fig. S7 J and K).
Thus, SOD1 down-regulation in motor neurons cannot be the
primary contributor to APC’s therapeutic effects seen during
early disease. Rather, the effects of APC on gene expression pro-
files of different cell types under stress show a remarkable com-
plexity in the diverse effects mediated by APC (37). Importantly,
BSCB protection is the sole beneficial effect of APC treatment
seen during early disease stage in SOD1G93A mice.
When 5A-APC was given before early disease (and before

a detectable microglia response), the strong anti-inflammatory
effect previously reported for 5A-APC therapy, including in-
hibition of SOD1 expression in microglia (11), was not found. A
continuation of early presymptomatic 5A-APC treatment from
day 35 postnatal until clinical death significantly increased life-
span [by 40 d (29%) and 42 d (35%) compared with saline (Fig.
S8 A and B) and warfarin treatment (Fig. S9 A and B), respec-
tively] and extended disease progression phase [by 20 d (79%) and
23 d (88%) compared with saline (Fig. S8C) and warfarin treat-
ment (Fig. S9C), respectively] in SOD1G93A mice with both
spontaneous and accelerated microvascular lesions. These data
demonstrate that early presymptomatic treatment with 5A-APC
of SOD1G93A mice with either spontaneous or warfarin-acceler-
ated microvascular lesions has greater beneficial effects on life-
span than the previously reported 28 d (25%) extension of lifespan
obtained with postsymptomatic treatment of SOD1G93A mice
with 5A-APC beginning 1 wk after phenotypic disease onset
(determined by weight loss) (11). Greater overall beneficial
effects of an early treatment of SOD1G93A mice with 5A-APC
compared with late postsymptomatic treatment (11) are likely
attributable to repair and/or maintenance of BSCB integrity,
thereby preventing entry and accumulation of neurotoxic blood-
derived products within the spinal cord during an initial disease
phase (Fig. 1 A–G).

Iron Chelation Mitigates Early Motor-Neuron Injury. Iron chelation
has been reported to protect cultured motor neurons from he-
moglobin-induced injury (26) and to extend lifespan (without
changes in blood vessels and/or BSCB integrity to blood-derived
iron) when applied at a relatively late disease stage in SOD1G37R

mice that have already induced higher levels of expression
of iron homeostasis proteins in neurons and astrocytes (38).
To determine whether eliminating the BSCB-derived injurious
stimuli can similarly delay early onset of motor-neuronal injury,
we used treatment with deferoxamine (DFX) beginning at an
early point postnatally (day 35) to chelate blood-derived iron in
SOD1G93A mice that develop spontaneous and warfarin-accel-
erated vascular lesions. DFX treatment did not alter BSCB
permeability to IgG, hemoglobin, or hemosiderin in SOD1G93A

mice (Fig. 1 B–D), but significantly reduced early free iron ac-
cumulation (Fig. 1E and Fig. S10A), accompanied by delayed
onset [by 11 and 18 d compared with saline (Fig. 2 E and F) and
warfarin treatment (Fig. 2 G and H), respectively] of motor
impairment in SOD1G93A mice with spontaneous and accelerated
microvascular lesions. DFX delayed early motor-neuron de-
generative changes (Fig. 3 C and F) and loss of ChAT-positive
motor neurons in warfarin-treated SOD1G93A mice (Fig. 3B), and
reduced oxidant stress, SOD1 oxidative changes, and oxidant
motor-neuron injury (Fig. 4 A, D, and G). Early motor-neuron
dysfunction in the SOD1G93A mice occurred in the absence of
changes in the expression of iron homeostasis proteins in the
spinal cord (including the divalent-metal transporter 1, trans-
ferrin-receptor 1, iron exporter ferroportin, two feroxidases, and
ferritin heavy and light chains) (Fig. S10B). Iron chelation also
extended lifespan [by 13 d (10%) and 20 d (18%) compared with
saline (Fig. S8 A and B) and warfarin treatment (Fig. S9 A and
B), respectively] but did not affect significantly disease pro-
gression compared with saline (Fig. S8C) and warfarin treatment
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(Fig. S9C), respectively, in SOD1G93A mice with both spontane-
ous and accelerated microvascular lesions.
These DFX iron chelator data offer strong support for a

model in which an early presymptomatic accumulation of iron
in the spinal cord of SOD1G93A mice with spontaneous and ac-

celerated microvascular lesions (Fig. 1E and Fig. S10A) reflects
increased influx of blood-derived iron across a disrupted BSCB,
as indicated by extravasation of blood’s erythrocytes (Fig. 1G)
resulting in deposition of iron-containing proteins hemoglobin
and hemosiderin (Fig. 1 C and D) and release of free iron (20).

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

300 500 700 900

P
ro

te
in

 c
ar

bo
ny

l
(n

m
ol

 p
er

 m
g 

pr
ot

ei
n)

Free iron
(ng iron per mg protein)

B

r = 0.9046
p < 0.01

F

G

Saline
0.3 W 
0.4 W 
0.6 W

SOD1
G93A

Monomer

Dimer

Trimer
Tetramer

Pentamer

IB: Oxyblot
IP: SOD1

Sali
ne

0.4
 W

0.4
 W

 + 
DFX

kDa

15

30

40
50
60

80

kDa

15

30

40
50
60
80

110

160

260

Sali
ne

0.4
 W

0.4
 W

 + 
DFX

Sali
ne

0.4
 W

C

kDa

15

30

40
50
60

80
110

160

260

Monomer

Dimer

Trimer

Tetramer

Pentamer

Sali
ne

0.4
 W

0.4
 W

 + 
GSHE

kDa

15

30

40
50
60

80
110

160

260

Monomer

Dimer

Trimer

Tetramer

Pentamer

D

E

Detergent insoluble

Detergent insoluble

Detergent insoluble

IB: Oxyblot
IP: SOD1

IB: Oxyblot
IP: SOD1

kDa

15

30

40
50
60

80

kDa

15

40
50
60

80

30

Sali
ne

0.4
 W

0.4
 W

 + 
GSHE

Sali
ne

0.4
 W

0.4
 W

 + 
APC

A

0

0.04

0.08

0.12

P
ro

te
in

 c
ar

bo
ny

l
(n

m
ol

 p
er

 m
g 

pr
ot

ei
n)

0.16 *

*

B6SJL SOD1
G93A

W -- -- 0.3 0.4 0.6 0.4 0.4

APC
-- -- 0.4

DFX
GSHE

--

APC
DFX

GSHE

1

2

3

4

5

3-
N

T 
si

gn
al

 in
te

gr
at

ed
 d

en
si

ty
 (x

10
3 )

 p
er

 m
ot

or
 n

eu
ro

n *

0

*

B6SJL SOD1
G93A

W -- -- 0.3 0.4 0.6 0.4 0.4

APC
-- -- 0.4

DFX
GSHE

--

APC
DFX

GSHE

* 0.4 W

* * *

0.4
 W

 + 
APC

Saline

* **

0.4 W

*
*

*
*

Saline
* * *

0.4 W 0.4W + APC

3-
ni

tro
ty

ro
si

ne
C

hA
T

M
er

ge

SOD1
G93A

50μM

Saline

Fig. 4. Early oxidant stress and prevention in SOD1G93A mice with spontaneous and accelerated microvascular lesions. (A) Oxidized protein carbonyls in
lumbar cords of 95-d-old nontransgenic B6SJL controls and SOD1G93A mice treated with saline, 0.3–0.6 mg·kg−1·d−1 warfarin (W), or 100 μg·kg−1·d−1 5A-APC
(APC), 100 mg·kg−1·d−1 DFX, or 50 mg·kg−1·d−1 GSHE with saline or 0.4 mg·kg−1·d−1 warfarin. (B) Positive correlation between free iron and protein carbonyls
in mice from A. Each point is an individual data point; r, Pearson’s correlation; n = 3–4 mice per group. (C–E) Representative immunoblotting of human
oxidized SOD1 detergent-insoluble species (Left) and detergent-insoluble SOD1 aggregates (Right) in lumbar cord of 95-d-old SOD1G93A mice treated with
saline, 0.4 mg·kg−1·d−1 warfarin, or 0.4 mg·kg−1·d−1 warfarin with 100 μg·kg−1·d−1 5A-APC (C), 100 mg·kg−1·d−1 DFX (D), or 50 mg·kg−1·d−1 GSHE (E). (F) ChAT-
positive motor neurons (red) and 3-nitrotyrosine (3-NT)-positive signal (green) in lumbar spinal cord of 95-d-old SOD1G93A mice treated with saline, 0.4 mg·kg−1·d−1

warfarin or 0.4 mg·kg−1·d−1 warfarin and 100 μg·kg−1·d−1 5A-APC. (G) Quantification of 3-NT–positive signal in mice from A. In A and G, mean ± SEM; n = 3–5 mice
per group. *P < 0.05; NS, nonsignificant.
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Compared with APC therapy, the beneficial effects of DFX on
lifespan were more modest, as would be anticipated by the in-
ability of chelation to inhibit influx of other potentially neu-
rotoxic blood-derived products that do not depend on iron
neurotoxicity, including thrombin and fibrin (14, 15), each of
which can freely diffuse across a disrupted BSCB. Moreover,
iron chelation by DFX does not provide direct anti-inflammatory
and direct motor-neuronal protective effects that have been
shown to contribute to 5A-APC’s beneficial effects during late
disease stage (11).

Antioxidant Treatment Mitigates Early Motor-Neuron Injury. Finally,
we tested whether glutathione monoethyl ester (GSHE), an
antioxidant that in its reduced form has been shown to coun-
teract oxidative damage in rodents with spinal-cord injury (39),
could delay disease onset in SOD1G93A mice. GSH is quantita-
tively the most important endogenous recycled antioxidant. Re-
duced GSH levels accelerate neurological deficits in SOD1G93A

mice (40). GSHE is cell-permeable and is transported across the
BSCB (in contrast to GSH, which is poorly transported into
cells). GSHE did not alter the BSCB integrity or iron accumu-
lation in SOD1G93A mice (Fig. 1 B–E), but onset of motor
symptoms in mice with either spontaneous or accelerated mi-
crovascular lesions was delayed by 10 and 15 d, respectively,
compared with saline (Fig. 2 E and F) or when administered
along with warfarin (Fig. 2 G and H). GSHE also delayed early
motor-neuron degenerative changes in SOD1G93A mice with both
spontaneous and accelerated microvascular lesions (Fig. 3 C–F)
and prevented early loss of ChAT-positive motor neurons in
warfarin-treated SOD1G93A mice (Fig. 3B). As expected, GSHE
reduced early oxidant stress (measured by oxidized protein car-
bonyl content), SOD1 oxidative changes, and early oxidant mo-
tor-neuron injury (Fig. 4 A, E, and G).
Presymptomatic GSHE treatment modestly increased lifespan

[by 10 d (10%) and 14 d (13%) compared with saline (Fig. S8 A
and B) and warfarin treatment (Fig. S9 A and B), respectively]
but, similar to DFX, did not affect disease progression phase
compared with either saline (Fig. S8C) or warfarin treatment
(Fig. S9C), respectively, in SOD1G93A mice with spontaneous
and/or accelerated microvascular lesions. GSHE effects on life-
span were proportional to the magnitude of its beneficial ef-
fects on delaying disease onset compared with saline (Fig. 2 D
and E) and warfarin (Fig. 2 F and G), respectively. Like iron
chelation, the overall benefits of GSHE treatment were less
pronounced than seen with 5A-APC, possibly related to a lack
of significant GSHE effect on BSCB integrity, as well as lack
of direct anti-inflammatory and neuroprotective effects on cells
that have been shown to play an important role in 5A-APC
effects on lifespan (11).

Conclusions and Future Directions. Studies in mice have demon-
strated that direct SOD1 damage within motor neurons is a
central component of driving disease initiation but not disease
progression (21, 25, 41) whereas progression is predominantly
determined by responses within microglia and astrocytes (21–
26). Here, we have focused on events occurring in the early dis-
ease phase. Early oxidative damage has been repeatedly reported
in mutant SOD1 mice, including mRNA oxidation (42). Our
efforts now provide a molecular mechanism for such damage and
link intraneuronal damage to initial disease. We have found that
early BSCB breakdown (spontaneous and/or accelerated) di-
rectly contributes to early motor-neuron injury in SOD1G93A

mice and that restoring the BSCB integrity and/or eliminating
the BSCB-derived sources of neuronal injury delay initial motor-
neuron degeneration (Fig. 5). Our findings in ALS mice raise
questions as to whether similar BSCB disruption in patients with
familial and/or sporadic ALS contributes to early motor-neuron
degeneration in humans. Future studies using models with a

chronic BBB/BSCB disruption independent of human SOD1
transgene expression, such as pericyte-deficient mice (13, 14),
are now needed to explore whether early motor-neuron de-
generation can be initiated by BSCB disruption in the absence
of SOD1 motor-neuronal damage.

Materials and Methods
Reagents. Warfarin sodium, DFX, and GSHE were obtained from Sigma-
Aldrich. Recombinant mouse 5A-APC (RR230/231AA and KKK192-194AAA)
variant was purified as described (37).

Animals. Male SOD1G93A mice were purchased from The Jackson Laboratory.
Mice were treated with daily i.p. injections of saline, warfarin sodium (0.3,
0.4, or 0.6 mg/kg), 5A-APC (100 μg/kg), DFX (100 mg/kg), and/or GSHE (50
mg/kg), beginning at postnatal day 35. Disease onset was determined by
rotarod analysis. All procedures were approved by the Institutional Animal
Care and Use Committee at the University of Rochester and the University of
Southern California. See SI Materials and Methods for details regarding
rotarod analysis, definition of clinical death, tissue preparation, and blood
sample collection for INR measurements. Mice were randomly assigned to
treatment groups, and analyses were performed in a blinded fashion.

In Vitro Analyses. Primary neuronal cultures, primary mouse endothelial cells,
and enriched motor-neuron cell preparations from SOD1G93A mice were
established as previously described. See SI Materials and Methods for details
and references.

Brightfield Microscopy. Prussian blue staining and quantification of hemo-
siderin deposits were performed as described (9, 14).

Confocal Microscopy. Tissue sections were imaged with a custom-built Zeiss
510 Meta confocal laser scanning microscope with a Zeiss Apochromat 25×/
0.8 NA water immersion objective (Carl Zeiss Microimaging). See SI Materials
and Methods for details regarding immunofluorescent and fluorescent
staining (Table S2), description of all antibodies used to detect endothelial
cells (lectin and collagen IV), neurons (SMI-311, SMI-32, ChAT, and NeuN)
and other antigens (e.g., 3-nitrotyrosine and ubiquitin), lasers and band-pass
filters, regions analyzed, IgG accumulation, motor-neuron counts, neuritic
density, ubiquitin accumulation, 3-nitortyrosine, and quantifications methods.

Immunoblotting. Formation of detergent-soluble and insoluble SOD1 ag-
gregation was analyzed as described (43). Tight junction proteins were an-
alyzed as described (9). See SI Materials and Methods for details.

Red Blood Cells

Hemoglobin

Fe2+(Iron)

Early Stage BSCB Breakdown

Iron Chelation  
            (DFX)

BSCB Repair
    (5A-APC)

Antioxidants
   (GSHE) Reactive Oxygen Species

Early Motor Neuron Injury

Fig. 5. A schematic illustrating how early blood–spinal cord barrier (BSCB)
breakdown initiates motor-neuron injury and how BSCB-directed treatments
blocking different steps in the BSCB pathogenic cascade can prevent early
motor-neuron injury.
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Biochemical Analyses. Free, chelatable iron levels and hemoglobin were
quantified as described (44, 45). See SI Materials and Methods for details on
protein carbonyl and sphingolipid measurements and RNA extraction and
quantitative real-time PCR. For detailed description of primer sets, see
Table S1.

Statistical Analysis. Log-rank tests with Bonferroni corrections for multiple
comparisons were used to analyze treatment effect on symptom onset, sur-
vival, and lifespan. Correlations were determined using Pearson’s correlation

analysis. Multifactorial analysis of variance, followed by Tukey post hoc tests,
was used to compare treatment and genotype effects between groups. A P
value < 0.05 was considered statistically significant for all studies.
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